
M A Y 2 0 2 4

1

Tech Explainers
N E U R A L N E T W O R K S

I N T R O D U C T I O N

In this Tech Explainer, we will provide a foundational understanding of neural networks, a pivotal
technology that underpins many methods of machine learning (ML). Neural networks are sophisticated
algorithms that consist of interconnected nodes, or neurons, arranged in layers that process and
manipulate data. This architecture allows neural networks to learn from large datasets and apply this
learning to make complex predictions.

Whereas artificial intelligence (AI) is a broad, function-oriented category describing any system that
can simulate human intelligence, ML simulates the human ability to learn from ingested data. Neural
networks are the functional components powering this capability, enabling tasks such as image and
speech recognition, natural language processing and autonomous decision-making.

To bring the abstract concept of neural networks to life, we will walk through a very basic actual
application of a neural network that can make a decision based on a given set of inputs. We will then
describe how more complex systems layer additional components to provide the “intelligence-like”
results we have come to expect from AI systems. First, though, we will introduce neural networks.

W H A T I S A N E U R A L N E T W O R K ?

A neural network is a collection of interconnected “nodes” arrayed in successive layers, often
represented as depicted in Figure 1.1

1 In particular, we depict a feedforward neural network, a unidirectional network in which information flows only forward
from the input nodes. This means that in feedforward neural networks, input is entirely independent of output. Recurrent
neural networks, by contrast, have bidirectional information flows, meaning output from one step is passed on as input to
a previous step (e.g., predicting the next word in a sentence requires preceding words in the sentence).

M A Y 2 0 2 4

2

The nodes (circles) in the neural network are called “neurons”. The neurons are arranged in layers. Each
neuron in the first “input layer” (the left-most layer in the diagram) represents one value inputted to the
system (for example, input signals from the outside world). Each neuron in the input layer formulates a
single output, which is propagated as input to each neuron in the subsequent layer, a “hidden layer”.
Each neuron in a hidden layer uses a mathematical operation to synthesize these multiple inputs in a
particular way, governed by custom settings (called “weights”), which cause the neuron to give some
inputs (i.e., the outputs from some nodes in the prior layer) greater weight than others in formulating its
output. Therefore, each neuron essentially reports to the next layer its conclusion about the previous
layer, given the patterns it was designed to focus on pursuant to the various weight settings. As we
demonstrate later, neural networks may consist of many hidden layers. The final “output layer” neurons
use mathematical operations to produce the final result, or prediction, of the system.

Proper training and “learning” of the system involves setting and then adjusting the weights of each
neuron. This process is accomplished without a human dictating the importance of each of the different
factors represented by each neuron. Rather, the weights are automatically adjusted based on training
data. In “supervised learning”, AI systems may be trained using massive datasets in which the data points
are labeled—for example, a system is given millions of images labeled “apple” and “orange” and adjusts
the weight of each input (color, texture, etc.) until it can correctly identify a new image as an apple or an
orange. In “unsupervised learning”, the data is unlabeled—the system is given millions of unlabeled
images of apples and oranges and adjusts the weights in order to group similar images (apples and
oranges, ripe fruit and rotten fruit, etc.). Beyond this, though, we will not be covering training in this
introductory article, and will presume the neural networks we explore have been pre-trained with all
weights and other variable parameters properly set for the desired function.

F I G U R E 1

M A Y 2 0 2 4

3

D E C I S I O N M A K I N G : T H E S I N G L E - L A Y E R P E R C E P T R O N

Neural networks are, at their core, prediction engines. To show why, we begin with an overly simplistic
example of a neural network, called a perceptron2—with a single hidden (or middle) layer comprising one
neuron—that, in our example, predicts whether you want to go skiing today.3 The system ingests three
input values: snow quality, avalanche danger and whether you will be accompanied by a friend. For
simplicity, this system takes binary values (0 or 1), so the three nodes of the input layer will look like this:

The neuron in the hidden layer will take each input, multiply it by a corresponding weight (each weight
will be different because you care differently about the three factors), and pass it through a function
described below to determine whether or not you should go skiing based on the given inputs.

The weights, as the name implies, allow the system to adjust the impact of different inputs. In mathematical
terms, we say that the neuron computes the weighted sum of the inputs, which equals the sum of each
input value multiplied by its weight: in our three-input example, (x1×w1)+(x2×w2)+(x3×w3).

4 For
example, you may care only minimally whether a friend is available to join the trip (let’s say w3=2),
whereas snow quality may be a bigger factor (w1=4) and avalanche danger may be the biggest (w2=5).
With these weight values, our neuron uses the following function to process any given input set:
(x1×4)+(x2×5)+(x3×2).

F I G U R E 2

2 Frank Rosenblatt implemented the first perceptron in 1957 on an IBM 704 mainframe computer. Perceptrons always use
supervised learning of binary classifiers.

3 As discussed above, we assume that our model has been trained with a sufficiently large dataset; in our case, the
machine must have been given information on snow quality, avalanche danger and whether you will be accompanied by a
friend, for each day you chose to ski or not to ski.

4 For n inputs, this can be represented using the summation operator as: ∑ j=1xj wj.
n

M A Y 2 0 2 4

4

So on the worst possible ski day (poor snow quality, high avalanche danger and no available friend), the
weighted sum will be (0×4)+(0×5)+(0×2)=0. At the other extreme, on a day with all factors in your
favor (good snow quality, low avalanche danger and available friend), the weighted sum will equal
(1×4)+(1×5)+(1×2)=11.

The hidden layer neuron takes this weighted sum5 and passes it through a function (called an “activation
function”) that translates the result into the next layer’s input. The activation function is accompanied
by a threshold value. In our simple perceptron example, the activation function is a basic unit step
function that yields a binary decision.6 If the activation function yields a result under the threshold value,
the output will be 0, so the neuron remains inactive; for results above the threshold value, the output
will be 1, so the neuron “fires”. The final “output layer”, in turn, takes as input the result of the hidden
layer and translates that into a final output: an answer to your ski trip quandary.7 If the hidden layer
neuron returns 0, the output layer outputs “do not go skiing”. If the hidden layer neuron returns 1, the
output layer outputs “do go skiing” and the trip is on.

This process can be summarized in a general sense with the diagram below:

5 The hidden layer neuron typically adds to the weighted sum a bias term, transforming our calculation into
(x1×w1)+(x2×w2)+(x3×w3)+b. We do not cover bias in this introductory article.

6 The unit step function, sometimes called the Heaviside step function, works well when data is linearly separable. In a
more complicated neural network, where data is not linearly separable, the unit step function would not work well.
Popular activation functions in the real world include sigmoid and rectifier functions (the most popular activation function
currently is the Rectified Linear Unit function, or ReLU) and are beyond the scope of this introductory article.

7 In a more advanced system, the output layer would typically be more complex, and, for example, include multiple nodes
that each represent the probability of a certain result (with the probabilities of all the nodes, representing all the possible
results, adding up to 1).

F I G U R E 3

M A Y 2 0 2 4

5

To illustrate the decision-making capabilities of our system with some exemplary input values, let’s
assume a threshold value of 6 for the activation function.8 On a day with good snow (x1=1), but high
avalanche danger (x2=0) and no friend (x3=0), the system will advise you to not go skiing:
(1×4)+(0×5)+(0×2)=4. But on a day with low avalanche danger (x2=1) and an available friend (x3=1),
the system will give a green light even when snow conditions are poor (x1=0): (0×4)+(1×5)+(1×2)=7.

This example illustrates how a single neuron can make an “intelligent” decision by performing
calculations on multiple inputs according to preset parameters. This decision is “intelligent” because it
learned from the large amount of training data that it ingested how important each of the factors were in
your historical skiing decisions and adjusted the weights of those factors appropriately for predicting
future skiing decisions. At the conclusion of the process, the system is able to make decisions that are
increasingly accurate even for scenarios not included in its training data.

These systems become exponentially more complex and powerful with the introduction of more
input values, more hidden layers and more neurons in each hidden layer—each neuron having its own
different set of weights. This added complexity allows different neurons to focus on different patterns,
and also to be able to identify patterns within patterns. In the next section, we will build upon our basic
single-layer perceptron to illustrate what happens when additional neurons and layers are added to
the system.

A D D I N G C O M P L E X I T Y

Let’s begin by adding a fourth neuron to the input layer representing temperature (for simplicity, (x4=0)
when below freezing and (x4=1) when above freezing). Our original neuron of the hidden layer will
now have another data point, with an associated weight (which may be low in this instance, e.g., (w4=1),
because you do not care that much what the temperature is on the slope) to help determine whether or
not to go skiing. But now we add a second neuron to the hidden layer; this neuron will be connected to
the same inputs but with different weights because it is trained to come to a conclusion about a different
question than our original hidden layer neuron. This new neuron, for example, may decide whether you
need to purchase new ski gear, because your current outfit is unfashionable and ill-suited for skiing.
For this neuron, therefore, snow conditions and friend availability may play minimal roles, while
temperature and avalanche danger may play higher roles. Our new expanded system can be represented
by the diagram below:

8 Someone with a threshold value of 5 would be more committed to skiing regardless of conditions; someone with a
threshold value of 7, less committed.

M A Y 2 0 2 4

6

This expanded system, though, produces two independent outputs.

We can further expand the system by adding a second hidden layer, which synthesizes the conclusions of
the two neurons of the first hidden layer to produce a new, integrated output.9 For example, we can add
a second hidden layer to produce a model that predicts whether you would indulge in some après ski.
This neuron receives as input the two outputs of the previous layer—whether you are going skiing and
whether you need to purchase new clothing—and computes the weighted sum of these inputs, which it
compares against the threshold value of its activation function. If the weighted sum exceeds the
threshold, the output will conclude that you will enjoy a beverage by the slopes; if the weighted sum is
below the threshold, the output will advise against it. In this example, the weight associated with the
skiing input may be low to represent the fact that you will have limited time to enjoy the après ski (this
weight having been gleaned from the training data which indicated that historically, on days you spent
on the slopes, you were less likely to spend time at the slope-side bar). The weight associated with the
clothing purchase, on the other hand, may be high because you are eager to socialize while decked out
in new gear. Our further expanded system now looks like this:

9 Neural networks with more than two hidden layers are known as “deep” neural networks.

F I G U R E 4

M A Y 2 0 2 4

7

We have thus illustrated how additional neurons can provide different perspectives on the same input
data, identifying unique patterns. Additional layers can build upon the patterns identified in the
previous layers to generate more nuanced outputs. We can expand this idea to an even more complex
application. For example, in a facial recognition system, the input layer may represent shading of
individual pixels of an image. A first hidden layer may look for patterns of edges or lines embedded in
the pixels (each neuron in this layer focusing on a different segment of the picture), and a second layer
may look at combinations of edges identified in the first layer for facial features such as eyes, nose or
mouth. A subsequent layer may look at certain combinations of those facial features to detect the
probability of the picture being a human face.

It should be noted that this description is merely illustrative; in a real system, the layers and neurons may
not have such well defined roles and the internal parameters may have been set and tweaked in response
to training data without much visibility as to what factor each weight corresponds to. In this way, the
training of complex AI systems is very much a “black box” endeavor, where adjustments are made in the
dark, so to speak, and final weights are established only because setting them at those values appears to
produce desirable outputs in most instances.

This idea can be generalized to numerous use cases, depending on the components built in to the system
and its training. At its core, though, the neural network acts as a feature extractor using its carefully
adjusted weights and parameters in the hidden layers to discern patterns within the input data and
deliver “intelligent” conclusions which may rival (or even surpass) the ability of natural intelligence.

F I G U R E 5

M A Y 2 0 2 4

8

W H Y L E G A L P R A C T I T I O N E R S S H O U L D C A R E

Neural networks underpin AI tools that are becoming wildly popular in so many fields, implicating
many novel legal questions. These legal issues range from privacy concerns with submitting confidential
training and input data to the systems, to licensing (including open source software) and copyright issues
with respect to both the act of training and also downstream usage of outputs that are similar to the
protected training data. Liability concerns also come into play regarding outputs that are inaccurate,
biased or injurious (e.g., an autonomous vehicle crash).

The legal community is also beginning to grapple with unprecedented questions around the IP
protectability (e.g., patent, copyright, trade secret) of AI systems and outputs, from an ownership
perspective and also with respect to 35 U.S.C. Section 101 (eligibility) and Section 112 (written
description/enablement) requirements. Understanding, for example, how parameter settings (weights,
etc.) in AI systems are key to its functionality will help inform analyses of which IP protections are most
suitable and how these IP protections can be best leveraged to protect such systems.

In general, now that we have demystified the process AI tools use to make decisions at the most
basic level, we will be better equipped to face applicable questions and help our clients navigate
the attendant cutting-edge issues.

David J. Kappos
+1-212-474-1168

dkappos@cravath.com

Sasha Rosenthal-Larrea
+1-212-474-1967

srosenthal-larrea@cravath.com

Carys J. Webb
+1-212-474-1249

cwebb@cravath.com

David M. Ungar
+1-212-474-1490

dungar@cravath.com

M A Y 2 0 2 4

9 cravath.com

N E W Y O R K

 Two Manhattan West
375 Ninth Avenue
New York, NY 10001
T+1-212-474-1000
F+1-212-474-3700

L O N D O N

 CityPoint
One Ropemaker Street
London EC2Y 9HR
T+44-20-7453-1000
F+44-20-7860-1150

W A S H I N G T O N , D . C .

 1601 K Street NW
Washington, D.C. 20006-1682
T+1-202-869-7700
F+1-202-869-7600

This publication, which we believe may be of interest to our clients and friends of the firm, is for general information only.
It should not be relied upon as legal advice as facts and circumstances may vary. The sharing of this information will not
establish a client relationship with the recipient unless Cravath is or has been formally engaged to provide legal services.

© 2024 Cravath, Swaine & Moore LLP. All rights reserved.

